Abstract

In this paper, a Bayesian approach is suggested to compare unit root models with stationary autoregressive models when both the level and the error variance are subject to structural changes (known as breaks) of an unknown date. Ignoring structural breaks in the error variance may be responsible for not rejecting the unit root hypothesis, even if allowance is made in the inferential procedures for breaks in the mean. The paper utilizes analytic and Monte Carlo integration techniques for calculating the marginal likelihood of the models under consideration, in order to compute the posterior model probabilities. The performance of the method is assessed by simulation experiments. Some empirical applications of the method are conducted with the aim to investigate if it can detect structural breaks in financial series, especially with changes in the error variance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.