Abstract
This paper describes a full probabilistic solution to the Simultaneous Localisation and Mapping (SLAM) problem. Previously, the SLAM problem could only be solved in real time through the use of the Kalman Filter. This generally restricts the application of SLAM methods to domains with straight-forward (analytic) environment and sensor models. In this paper the Sum-of-Gaussian (SOG) method is used to approximate more general (arbitrary) probability distributions. This representation permits the generalizations made possible by particle filter or Monte-Carlo methods, while inheriting the real-time computational advantages of the Kalman filter. The method is demonstrated by its application to sub-sea field data consisting of both sonar and visual observation of near-field landmarks.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.