Abstract

In cancer radiomics, textural features evaluated from image intensity-derived gray-level co-occurrence matrices (GLCMs) have been studied to evaluate gray-level spatial dependence within the regions of interest in the brain. Most of these analysis work with summary statistics (or texture-based features) constructed using the GLCM entries, and potentially overlook other structural properties in the GLCM. In our proposed Bayesian framework, we treat each GLCM as a realization of a two-dimensional stochastic functional process observed with error at discrete time points. The latent process is then combined with the outcome model to evaluate the prediction performance. We use simulation studies to assess the performance of our method and apply it to data collected from individuals with lower grade gliomas. We found our approach to outperform competing methods that use only summary statistics to predict isocitrate dehydrogenase (IDH) mutation status.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.