Abstract
A two-stage photovoltaic water-pumping system architecture is presented in this paper. In contrast with other alternatives available in the literature, the electronic drive does not exploit batteries to accomplish energy decoupling, neither large electrolytic capacitors in between stages. Although these two design decisions, respectively, minimize environmental impacts and increase the converter's expected lifetime, they also bring about considerable control difficulties. More specifically, the dc-link stiffness is reduced, and thus, large voltage oscillations may occur. In order to overcome this problem, a nonlinear controller interconnection between the individual compensator of each stage is created to account for the low capacitance. Simulations and experimental results demonstrate the effectiveness of the method in stabilizing the dc-link voltage under sudden solar irradiation changes. The final converter was deployed in a remote rural community in Guinea-Bissau for crop irrigation purposes. Despite the harsh conditions such as high temperatures and sea breeze, in situ results were satisfactory and validated the system robustness.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.