Abstract

This paper presents a batteryless heartbeat detection system-on-chip (SoC) powered by human body heat. An adaptive threshold generation architecture using pulse-width locked loop (PWLL) is developed to detect heartbeats from electrocardiogram (ECG) in the presence of motion artifacts. The sensing system is autonomously powered by harvesting thermal energy from human body heat using a thermoelectric generator (TEG) coupled to a low-voltage, self-starting boost converter and integrated power management system. The SoC was implemented in a 0.18 μm CMOS process and is fully functional with a minimum input power of 20 μW, provided by a portable TEG at 20 mV with a ~0.5 °C temperature gradient. The complete system demonstrates motion-adaptive, power-autonomous heartbeat detection for sustainable healthcare using wearable devices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call