Abstract

The lithium-ion battery is the key power source of a hybrid vehicle. Accurate real-time state of charge (SOC) acquisition is the basis of the safe operation of vehicles. In actual conditions, the lithium-ion battery is a complex dynamic system, and it is tough to model it accurately, which leads to the estimation deviation of the battery SOC. Recursive least squares (RLS) algorithm with fixed forgetting factor is widely used in parameter identification, but it lacks sufficient robustness and accuracy when battery charge and discharge conditions change suddenly. In this paper, we proposed an adaptive forgetting factor regression least-squares–extended Kalman filter (AFFRLS–EKF) SOC estimation strategy by designing the forgetting factor of least squares algorithm to improve the accuracy of SOC estimation under the change of battery charge and discharge conditions. The simulation results show that the SOC estimation strategy of the AFFRLS–EKF based on accurate modeling can effectively improve the estimation accuracy of SOC.

Highlights

  • IntroductionInstitute of Industry Energy-Saving Control and Evaluation, Hunan University, Changsha 410000, China; Abstract: The lithium-ion battery is the key power source of a hybrid vehicle. Accurate real-time state of charge (SOC) acquisition is the basis of the safe operation of vehicles. In actual conditions, the lithium-ion battery is a complex dynamic system, and it is tough to model it accurately, which leads to the estimation deviation of the battery SOC. Recursive least squares (RLS) algorithm with fixed forgetting factor is widely used in parameter identification, but it lacks sufficient robustness and accuracy when battery charge and discharge conditions change suddenly. In this paper, we proposed an adaptive forgetting factor regression least-squares–extended Kalman filter (AFFRLS–EKF) SOC estimation strategy by designing the forgetting factor of least squares algorithm to improve the accuracy of SOC estimation under the change of battery charge and discharge conditions. The simulation results show that the SOC estimation strategy of the AFFRLS–EKF based on accurate modeling can effectively improve the estimation accuracy of SOC

  • As a key power source for hybrid electric vehicles, accurate acquisition of state of charge (SOC) is very important to improve the dynamic performance of the battery and optimize the energy management strategy [2,3]

  • Aiming at the inaccurate estimation of battery parameters caused by the change of current charging and discharging state, this paper proposes a forgetting factor adaptive least-square parameter identification algorithm

Read more

Summary

Introduction

Institute of Industry Energy-Saving Control and Evaluation, Hunan University, Changsha 410000, China; Abstract: The lithium-ion battery is the key power source of a hybrid vehicle. Accurate real-time state of charge (SOC) acquisition is the basis of the safe operation of vehicles. In actual conditions, the lithium-ion battery is a complex dynamic system, and it is tough to model it accurately, which leads to the estimation deviation of the battery SOC. Recursive least squares (RLS) algorithm with fixed forgetting factor is widely used in parameter identification, but it lacks sufficient robustness and accuracy when battery charge and discharge conditions change suddenly. In this paper, we proposed an adaptive forgetting factor regression least-squares–extended Kalman filter (AFFRLS–EKF) SOC estimation strategy by designing the forgetting factor of least squares algorithm to improve the accuracy of SOC estimation under the change of battery charge and discharge conditions. The simulation results show that the SOC estimation strategy of the AFFRLS–EKF based on accurate modeling can effectively improve the estimation accuracy of SOC.

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call