Abstract

AbstractMultimodal tactile sensors, as key information input channel in human‐machine interactions, have faced the significant challenges including high power‐consumption, multimodal data fusion, and wireless transmission. In this work, a battery‐free multimodal wireless tactile sensor (TC‐MWTS) based on tribo‐capacitive coupled effect for normal and shear force fusion sensing is proposed, which is enabled by a 3D structure combining a triboelectric sensor and a capacitive sensor coupled with an inductive coil. A triboelectric sensor equipped with contact‐discharge structures exhibits 25‐fold wireless signal enhancement compared to conventional triboelectric sensors. Based on the characteristics of dual time‐frequency domain information existing in the wireless signals, both normal and shear forces can simultaneously be converted into voltage amplitude V and eigenfrequency f, respectively, without crosstalk and complex decoupling signals. The TC‐MWTS exhibits a maximum sensitivity of 2.47 V kPa−1 for normal force from 2 to 30 kPa and a sensitivity of 0.28 MHz N−1 for shear force between 0.3 and 1.0 N. Finally, the excellent sensing capability of TC‐MWTS to sense complex multidimensional forces in human‐machine interaction is demonstrated. This work innovatively proposes a new mechanism and methodology for effectively fusing and processing multimodal tactile information, which may drive the tremendous development of low‐power multimodal tactile sensing system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.