Abstract

Balancing the grid at 50 Hz requires managing many distributed generation sources against a varying load, which is becoming an increasingly challenging task due to the increased penetration of renewable energy sources such as wind and solar and loss of traditional generation which provide inertia to the system. In the UK, various frequency support services are available, which are developed to provide a real-time response to changes in the grid frequency. The National Grid (NG) — the main distribution network operator in the UK — have introduced a new and fast service called the Enhanced Frequency Response (EFR), which requires a response time of under one second. A battery energy storage system (BESS) is a suitable candidate for delivering such service. Therefore, in this paper a control algorithm is developed to provide a charge/discharge power output with respect to deviations in the grid frequency and the ramp-rate limits imposed by the NG, whilst managing the state-of-charge (SOC) of the BESS for an optimised utilisation of the available stored energy. Simulation results on a 2 MW/1 MWh lithium-titanate BESS are provided to verify the proposed algorithm based on the control of an experimentally validated battery model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.