Abstract

We consider an M x / G/1 queueing system with a vacation time under single vacation policy, where the server takes exactly one vacation between two successive busy periods. We derive the steady state queue size distribution at different points in times, as well as the steady state distributions of busy period and unfinished work (backlog) of this model. Scope and purpose This paper addresses issues of model building of manufacturing systems of job-shop type, where the server takes exactly one vacation after the end of each busy period. This vacation can be utilized as a post processing time after clearing the jobs in the system. To be more realistic, we further assume that the arrivals occur in batches of random size instead of single units and it covers many practical situations. For example in manufacturing systems of job-shop type, each job requires to manufacture more than one unit; in digital communication systems, messages which are transmitted could consist of a random number of packets. These manufacturing systems can be modeled by M x / G/1 queue with a single vacation policy and this extends the results of Levy and Yechiali, Manage Sci 22 (1975) 202, and Doshi, Queueing Syst 1 (1986) 29.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call