Abstract

This paper introduces a theoretical (magnetic and robotic) and experimental study of a robotic locomotion principle utilizing a triangular artificial magnetic chain with a rotating magnetic field for biomedical applications. A three-axis Helmholtz coil system with external controller (joystick) controls the moving direction of the proposed magnet chain according to changes of the plane of the rotating magnetic field. The proposed magnet chain consists of three NdFeB magnets, and its magnetic property depends on dipoles interaction. Also, motion dynamics bring about a magnetic torque analyzed by robotics. A total magnetic moment on the triangular magnet chain provides magnetic torque in the rotating magnetic field, and a geometric property produces a stable movement for robotic locomotion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call