Abstract

Time-Sensitive Networking (TSN) and Deterministic Networking (DetNet) are emerging standards to enable deterministic, delay-critical communication in such networks. This naturally (re-)calls attention to the network calculus theory (NC), since a rich set of results for delay guarantee analysis have already been developed there. One could anticipate an immediate adoption of those existing network calculus results to TSN and DetNet. However, the fundamental difference between the traffic specification adopted in TSN and DetNet and those traffic models in NC makes this difficult, let alone that there is a long-standing open challenge in NC. To address them, this paper considers an arrival time function based max-plus NC traffic model. In particular, the mapping between the TSN / DetNet and the NC traffic model is proved. In addition, the superposition property of the arrival time function based NC traffic model is found and proved. Appealingly, the proved superposition property shows a clear analogy with that of a well-known counterpart traffic model in NC. These results help make an important step forward towards the development of a system theory for delay guarantee analysis of TSN / DetNet networks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.