Abstract

A novel baseline-free method for damage detection of vehicle-bridge interaction (VBI) systems is proposed. The proposed method is physics-based, in contrast to many prevailing approaches, which are purely data-based techniques. It uses incomplete measurement data by incorporating the static condensation transformation matrix into the equations to obtain the final formulas. However, the static condensation of the damaged beam is not known a priori. Therefore, it is shown analytically that the static condensation transformation matrix of the undamaged beam can be used instead of the one corresponding to the damaged beam. This has been confirmed through numerical simulations for different boundary conditions of the beam. Various factors are studied numerically in order to demonstrate the robustness of the proposed method, including road roughness, boundary conditions, variable moving mass velocity and measurement noise. The results demonstrate the capability of the proposed method in damage detection of beam-type structures subjected to a moving mass in the presence of 5% noise. It has also been shown that averaging the results obtained from noisy data collected through several repetitions of the experiment can improve the final prediction of the location and severity of damage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.