Abstract

The generation of synthetic data is widely considered as viable method for alleviating privacy concerns and for reducing identification and attribute disclosure risk in micro-data. The records in a synthetic dataset are artificially created and thus do not directly relate to individuals in the original data in terms of a 1-to-1 correspondence. As a result, inferences about said individuals appear to be infeasible and, simultaneously, the utility of the data may be kept at a high level. In this paper, we challenge this belief by interpreting the standard attacker model for attribute disclosure as classification problem. We show how disclosure risk measures presented in recent publications may be compared to or even be reformulated as machine learning classification models. Our overall goal is to empirically analyze attribute disclosure risk in synthetic data and to discuss its close relationship to data utility. Moreover, we improve the baseline for attribute disclosure risk from the attacker's perspective by applying variants of the RadiusNearestNeighbor and the EnsembleVote classifier.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.