Abstract

Increasing integration of renewable resources brings more flexibility and poses new challenges to modern power systems, leading to highly nonlinear and complex dynamics. This paper aims to provide a general solution framework to traditional control problems, such as frequency control and voltage control, which attempt to maintain the stability of either synchronous generators-governed or inverter-governed systems when subjected to a disturbance and simultaneously guarantee operational constraints, providing a complete complement to existing works on control design. Building on reinforcement learning (RL) and control barrier functions, the framework includes two subsystems, i.e., a model-free controller and a barrier-certification system, which discover RL-based control actions and sequentially filter them using a barrier certificate to satisfy operational constraints. Calculating a barrier function is generally challenging for a complex power system. This is addressed by representing the barrier function using neural networks (NNs) and data-based approaches. An adaptive method is introduced to certify the neural barrier function that perseveres barrier conditions, which is more compatible with online implementation. The proposed framework synthesizes a stabilizing controller that satisfies predefined safety regions. The effectiveness of the proposed framework is demonstrated via several comparative case studies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call