Abstract

Donor-acceptor interactions are ubiquitous in the design and understanding of host-guest complexes. Despite their non-covalent nature, they can readily dictate the self-assembly of complex architectures. Here, a photo-/redox-switchable metal-organic nanocapsule is presented, which was assembled by using lanthanide ions and viologen building blocks, by relying on such donor-acceptor interactions. The potential of this unique barrel-shaped structure is highlighted for the encapsulation of suitable electron donors, akin to the well-investigated "blue-box" macrocycles. The light-triggered reduction of the viologen units has been investigated by single-crystal-to-single-crystal X-ray diffraction experiments, complemented by magnetic, optical, and solid-state electrochemical characterizations. Density functional theory (DFT) calculations were employed to suggest the most likely electron donor in the light-triggered reduction of the viologen-based ligand.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.