Abstract

Several neutral species (MgI, SiI, CaI, FeI) have been detected in a weak MgII absorption line system (W_r(2796)~0.15 Angstroms) at z~0.45 along the sightline toward HE0001-2340. These observations require extreme physical conditions, as noted in D'Odorico (2007). We place further constraints on the properties of this system by running a wide grid of photoionization models, determining that the absorbing cloud that produces the neutral absorption is extremely dense (~100-1000/cm^3), cold (<100 K), and has significant molecular content (~72-94%). Structures of this size and temperature have been detected in Milky Way CO surveys, and have been predicted in hydrodynamic simulations of turbulent gas. In order to explain the observed line profiles in all neutral and singly ionized chemical transitions, the lines must suffer from unresolved saturation and/or the absorber must partially cover the broad emission line region of the background quasar. In addition to this highly unusual cloud, three other ordinary weak MgII clouds (within densities of ~0.005/cm^3 and temperatures of ~10000K) lie within 500 km/s along the same sightline. We suggest that the "bare molecular cloud", which appears to reside outside of a galaxy disk, may have had in situ star formation and may evolve into an ordinary weak MgII absorbing cloud.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.