Abstract

BackgroundThe decline in the efficacy of artemisinin-based combination treatment (ACT) in some endemic regions threatens the progress towards global elimination of malaria. Molecular surveillance of drug resistance in malaria-endemic regions is vital to detect the emergence and spread of mutant strains.MethodsWe observed 89 malaria patients for the efficacy of artemether-lumefantrine for the treatment of uncomplicated Plasmodium falciparum infections in Lagos, Nigeria and determined the prevalence of drug resistant strains in the population. Parasite clearance rates were determined by microscopy and the highly sensitive var gene acidic terminal sequence (varATS) polymerase chain reaction for 65 patients with samples on days 0, 1, 3, 7, 14, 21 and 28 after commencement of treatment. The genomic finger print of parasite DNA from pre- and post-treatment samples were determined using 24 nuclear single nucleotide polymorphisms (SNP) barcode for P. falciparum. Drug resistance associated alleles in chloroquine resistance transporter gene (crt-76), multidrug resistance genes (mdr1–86 and mdr1–184), dihydropteroate synthase (dhps-540), dihydrofolate reductase (dhfr-108) and kelch domain (K-13580) were genotyped by high resolution melt analysis of polymerase chain reaction (PCR) fragments.ResultsBy varATS qPCR, 12 (18.5%) of the participants had detectable parasite DNA in their blood three days after treatment, while eight (12.3%) individuals presented with genotypable day 28 parasitaemia. Complexity of infection (CoI) was 1.30 on day 0 and 1.34 on day 28, the mean expected heterozygosity (HE) values across all barcodes were 0.50 ± 0.05 and 0.56 ± 0.05 on days 0 and 28 respectively. Barcode (π) pairwise comparisons showed high genetic relatedness of day 0 and day 28 parasite isolates in three (37.5%) of the eight individuals who presented with re-appearing infections. Crt-76 mutant allele was present in 38 (58.5%) isolates. The mdr1–86 mutant allele was found in 56 (86.2%) isolates. No mutation in the K-13580 was observed.ConclusionsPersistence of DNA-detectable parasitaemia in more than 18% of cases after treatment and indications of genetic relatedness between pre- and post-treatment infections warrants further investigation of a larger population for signs of reduced ACT efficacy in Nigeria.

Highlights

  • The decline in the efficacy of artemisinin-based combination treatment (ACT) in some endemic regions threatens the progress towards global elimination of malaria

  • Malaria caused by Plasmodium falciparum infection is a significant public health problem in Nigeria where over 30% of the global burden of the disease is borne despite recent mass scale-up of intervention measures [1]

  • Parasite clearance rates Microscopic analysis showed that none of the participants presented with parasitaemia on day 3 while one of the participants presented with parasitaemia on day 28 (Fig. 2)

Read more

Summary

Introduction

The decline in the efficacy of artemisinin-based combination treatment (ACT) in some endemic regions threatens the progress towards global elimination of malaria. Molecular surveillance of drug resistance in malaria-endemic regions is vital to detect the emergence and spread of mutant strains. Evidence of resistance among African populations of Plasmodium falciparum remains scarce, there have been emerging cases of potentially adaptive strains and slow parasite clearance following treatment [4, 5]. These parasites are often below the threshold of detection and are rarely re-treated, contributing to disease transmission and spread of resistance [6]. Quantification and characterization of such parasite isolates after treatment is necessary for the proper evaluation and monitoring of drug efficacy

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call