Abstract

A bandwidth-enhanced, compact, single-feed, low-profile, multilayered, circularly polarized (CP) patch antenna is presented. A corner-truncated patch is introduced as a near-field resonant parasitic element directly beneath a specially engineered radiation patch. Without sacrificing the antenna's low profile and compact size, its presence not only introduces a new pair of orthogonal near-degenerate resonant modes, but also recovers a similar pair from the cross slot of the main patch. With the aid of both circular slots and meander-line slots on these patches, the resulting three pairs of adjacent near-degenerate modes have been successfully combined with the same clockwise polarization to enhance the CP bandwidth by more than a factor of two when compared to the same-height conventional single-layer patch antennas. Measured results are in good agreement with their simulated values and demonstrate that the reported antenna is low-profile: 0.016 λ 0 , achieves a -10-dB impedance bandwidth of ~4.6%, and a 3dB axial-ratio bandwidth of about 2.33% along with realized gains of 4.5 ± 0.15 dBi, throughout that bandwidth. Analyses of the current distributions are used to explain the contributions of the parasitic patch, and further simulation studies validate our design guidelines and show its advantages.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.