Abstract
Hyperspectral Image (HSI) has become one of the important remote sensing sources for object interpretation by its abundant band information. Among them, band selection is considered as the main theme in HSI classification to reduce the data dimension, and it is a combinatorial optimization problem and difficult to be completely solved by previous techniques. Whale Optimization Algorithm (WOA) is a newly proposed swarm intelligence algorithm that imitates the predatory strategy of humpback whales, and membrane computing is able to decompose the band information into a series of elementary membranes that decreases the coding length. In addition, Support Vector Machine (SVM) combined with wavelet kernel is adapted to HSI datasets with high dimension and small samples, ensemble learning is an effective tool that synthesizes multiple sub-classifiers to solve the same problem and obtains accurate category label for each sample. In the paper, a band selection approach based on wavelet SVM (WSVM) ensemble model and membrane WOA (MWOA) is proposed, experimental results indicate that the proposed HSI classification technique is superior to other corresponding and newly proposed methods, achieves the optimal band subset with a fast convergence speed, and the overall classification accuracy has reached 93% for HSIs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.