Abstract

AbstractA nonstandard proof of the fact that a Banach space in which a ball is contained in the range of a countably additive measure is superreflexive is given. The proof is an application of a general method in which we first transfer certain standard objects to the nonstandard hull of a Banach space and then, using the quite well developed theory of nonstandard hulls, derive results about the objects in the original Banach space. It also provides us with an example of the applications of the theory of nonstandard hull valued measures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.