Abstract

The upper troposphere and lower stratosphere (UTLS) region is a highly variable region of the atmosphere and critical for understanding climate. Yet, it remains undersampled in the observational satellite record. Due to recent advances in interferometer and infrared detection technologies, imaging Fourier transform spectrometer (FTS) technology has been identified as a feasible remote sensing approach to obtain the required precision and spatial resolution of atmospheric trace gas composition in the UTLS. Building on the success of instruments such as the Michelson Interferometer for Passive Atmospheric Sounding and gimbaled limb observer for radiance imaging of the atmosphere, the limb imaging Fourier transform spectrometer experiment (LIFE) instrument, of which this paper details the designand performance, is a balloon-borne infrared imaging FTS developed as an early prototype of a low earth orbit satellite instrument. LIFE is constructed primarily with commercially available off-the-shelf components, with a designemphasis on greatly reducing the complexity of the instrument, particularly the cooling requirements, with a minimal reduction in information gain on the target atmospheric greenhouse gases of water vapor, methane, ozone, and nitrous oxide. The developed instrument was characterized through a series of thermal and vacuum tests and validated through a successful demonstration balloon flight during the 2019 Strato-Science campaign in Canada. In the calibration of the data from the balloon flight, an issue was identified regarding a lack of knowledge in the emissivity of the on-board blackbody calibration sources. These systematic effects were minimized through the application of an emissivity ratio determined from the characterization tests where a wider range of known blackbody temperatures were available. Despite this identified calibration issue, the results demonstrate that the instrument is capable of meeting primary performance requirements for trace gas retrievals of the target atmospheric species.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.