Abstract
Brugada syndrome (BrS) is a primary arrhythmia syndrome affecting 1 in 2000 of the general population. Genetic testing identifies pathogenic variants in the sodium voltage-gated channel α-subunit 5 gene (SCN5A) in up to 25% of familial BrS. Balanced translocations, which involve the exchange of the ends of 2 different chromosomes, are found in approximately 1 in 500 people. They usually are benign and only rarely are reported to cause arrhythmogenic disorders. The purpose of this study was to identify the genetic mechanism underlying a family with BrS, sick sinus syndrome, cardiac hypertrophy, sudden cardiac death, and multiple miscarriages. We clinically evaluated family members with an electrocardiogram, 2-dimensional echocardiogram, and provocation testing with ajmaline challenge. Cytogenetic testing included karyotype and fluorescent in situ hybridization (FISH) analysis. We performed gene panel, exome, and genome sequencing analysis. Sequencing of 128 cardiac genes and exome sequencing of a family with BrS, sick sinus syndrome, cardiac hypertrophy, sudden cardiac death, and multiple miscarriages did not reveal a pathogenic variant. Karyotype and FISH analysis identified a balanced translocation breaking the SCN5A gene on chromosome 3 and the multiple chromosome maintenance 10 gene (MCM10) on chromosome 10 t(3;10)(p22.2;p13). We characterized both translocation breakpoint junctions using genome sequencing and found no regions of sequence homology. A balanced translocation breaking SCN5A is a novel mechanism underlying disease in a family with BrS, sick sinus syndrome, cardiac hypertrophy, and sudden cardiac death. Genome sequencing can identify rare chromosomal aberrations causing inherited diseases that may otherwise be missed using gene panel and exome sequencing-based approaches.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.