Abstract

We discuss the excess noise contributions of a practical balanced homodyne detector (BHD) in Gaussian-modulated coherent-state (GMCS) quantum key distribution (QKD). We point out that the key generated from the original realistic model of GMCS QKD may not be secure. In our refined realistic model, we take into account excess noise due to the finite bandwidth of the homodyne detector and the fluctuation of the local oscillator (LO). A high-speed BHD suitable for GMCS QKD in the telecommunication wavelength region is built and experimentally tested. The 3 dB bandwidth of the BHD is found to be 104 MHz and its electronic noise level is 13 dB below the shot noise at an LO level of 8.5×108 photons per pulse. The secure key rate of a GMCS QKD experiment with this homodyne detector is expected to reach Mbits s−1 over a few kilometers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.