Abstract
The Escherichia coli heat-labile enterotoxin B subunit (LT-B) has been used as a model antigen for the production of plant-derived high-valued proteins in maize. LT-B with its native signal peptide (BSP) has been shown to accumulate in starch granules of transgenic maize kernels. To elucidate the targeting properties of the bacterial LT-B protein and BSP in plant systems, the subcellular localization of visual marker green fluorescent protein (GFP) fused to LT-B and various combinations of signal peptides was examined in Arabidopsis protoplasts and transgenic maize. Biochemical analysis indicates that the LT-B::GFP fusion proteins can assemble and fold properly retaining both the antigenicity of LT-B and the fluorescing properties of GFP. Maize kernel fractionation revealed that transgenic lines carrying BSP result in recombinant protein association with fibre and starch fractions. Confocal microscopy analysis indicates that the fusion proteins accumulate in the endomembrane system of plant cells in a signal peptide-dependent fashion. This is the first report providing evidence of the ability of a bacterial signal peptide to target proteins to the plant secretory pathway. The results provide important insights for further understanding the heterologous protein trafficking mechanisms and for developing effective strategies in molecular farming.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.