Abstract

Cosmogenic nuclides inside germanium detectors contribute background noise spectra quite different from ordinary external sources. We propose and discuss a nuclide decay and level transition model based on graph theory to understand the background contribution of the decay of cosmogenic nuclides inside a germanium crystal. In this work, not only the level transition process, but the detector response time was also taken into consideration to decide whether or not to apply coincidence summing-up. We simulated the background spectrum of the internal cosmogenic nuclides in a germanium detector, and found some unique phenomena caused by the coincidence summing-up effect in the simulated spectrum. Thus, the background spectrum of each cosmogenic nuclide can be quantitatively obtained.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.