Abstract

AbstractThe concept of backbone variables in the satisfiability problem has been recently introduced as a problem structure property and shown to influence its complexity. This suggests that the performance of stochastic local search algorithms for satisfiability problems can be improved by using backbone information. The Partial MAX-SAT Problem (PMSAT) is a variant of MAX-SAT which consists of two CNF formulas defined over the same variable set. Its solution must satisfy all clauses of the first formula and as many clauses in the second formula as possible. This study is concerned with the PMSAT solution in setting a co-evolutionary stochastic local search algorithm guided by an estimated backbone variables of the problem. The effectiveness of our algorithm is examined by computational experiments. Reported results for a number of PMSAT instances suggest that this approach can outperform state-of-the-art PMSAT techniques.KeywordsSoft ConstraintConjunctive Normal Form FormulaExtremal OptimizationConstraint HierarchyStochastic Local Search AlgorithmThese keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.