Abstract

Imaging spectrometers have the potential to identify surface mineralogy based on the unique absorption features in pixel spectra. A back-propagation neural network (BPN) is introduced to classify Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) of the Cuprite mining district (Nevada) data into mineral maps. The results are compared with the traditional acquired surface mineralogy maps from spectral angle mapping (SAM). There is no misclassification for the training set in the case of BPN; however 17percent misclassification occurs in SAM. The validation accuracy of the SAM is 69percent, whereas BPN results in 86percent accuracy. The calibration accuracy of the BPN is higher than that of the SAM, suggesting that the training process of BPN is better than that of the SAM. Thehigh classification accuracyobtained withthe BPN can beexplained by: (1) its ability to deal with complex relationships (e.g., 40 dimensions) and (2) the nature of the dataset, the minerals are highly concentrated and they are mostly represented by pure pixels. This paper demonstrates that BPN has superior classification ability when applied to imaging spectrometer data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.