Abstract

We present ab initio (GVB–POL–CI) calculations for enough of the region about the abstraction and exchange saddle points for H(T)+CH4(CD4) to perform a full normal mode analysis of the transition states. The resulting normal mode frequencies are compared to four other published surfaces: an ab initio UHF–SCF calculation by Carsky and Zahradnik, a semiempirical surface by Raff, and two semiempirical surfaces by Kurylo, Hollinden, and Timmons. Significant quantitative and qualitative differences exist between the POL–CI results and those of the other surfaces. Transition state theory rate constants and vibrationally adiabatic reaction threshold energies were computed for all surfaces and compared to available experimental values. For abstraction, the POL–CI rates are in good agreement with experimental rates and in better agreement than are the rates of any of the other surfaces. For exchange, uncertainties in the experimental values and in the importance of vibrationally nonadiabatic effects cloud the comparison of theory to experiment. Tentative conclusions are that the POL–CI barrier is too low by several kcal. Unless vibrationaly nonadiabatic effects are severe, the POL–CI surface is still in better agreement with experiment than are the other surfaces. The rates for a simple 3-atom transition state theory model (where CH3 is treated as an atom) are compared to the rates for the full 6-atom model. The kinetic energy coupling of reaction coordinate modes to methyl group modes is identified as being of primary importance in determining the accuracy of the 3-atom model for this system. Substantial coupling in abstraction, but not exchange, causes the model to fail for abstraction but succeed for exchange.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.