Abstract

Photo-catalytic H2 production from water has been studied over Au–Cu2O nanoparticle deposited on TiO2 (anatase) in order to probe into both the plasmon resonance effect (Au nanoparticles) and the pn-junction at the Cu2O–TiO2 interface. The Au–Cu2O composite is in the form of ∼10nm Au nanoparticles grown on ∼475nm Cu2O octahedral nanocrystals with (111) facets by partial galvanic replacement. X-ray Photoelectron Spectroscopy (XPS) Cu2p and Auger L3M4,5M4,5 lines indicate that the surface of Cu2O is mainly composed of Cu+. The rate for H2 production (from 95 water/5 ethylene glycol; vol.%) over 2wt.% (Au/Cu2O)–TiO2 is found to be ∼10 times faster than that on 2wt.% Au–TiO2 alone. Raman spectroscopy before and after reaction showed the disappearance of Cu+ lines (2Eu) at 220cm−1. These observations coupled with the induction time observed for the reaction rate suggest that in situ reduction from Cu+ to Cu0 occurs upon photo-excitation. The reduction requires the presence of TiO2 (electron transfer). The prolonged activity of the reaction (with no signs of deactivation) despite the reduction to Cu0 indicates that the latter takes part in the reaction by providing additional sites for the reaction, most likely as recombination centers for hydrogen atoms to form molecular hydrogen. This phenomenon provides an additional route for enhancing the efficiency and lifetime of Cu2O–TiO2 photocatalytic systems, beyond the usually ascribed pn-junction effect.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call