Abstract

An Itanium Architecture microprocessor in 90-nm CMOS with 1.7B transistors implements a dynamically-variable-frequency clock system. Variable frequency clocks support a power management scheme which maximizes processor performance within a configured power envelope. Core supply voltage and clock frequency are modulated dynamically in order to remain within the power envelope. The Foxton controller and dynamically-variable clock system reside on die while the variable voltage regulator and power measurement resistors reside off chip. In addition, high-bandwidth frequency adjustment allows the clock period to adapt during on-die supply transients, allowing higher frequency processor operation during transients than possible with a single-frequency clock system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.