Abstract

In sub-100-nm generation, gate-tunneling leakage current increases and dominates the total standby leakage current of LSIs based on decreasing gate-oxide thickness. Showing that the gate leakage current is effectively reduced by lowering the gate voltage, we propose a local dc level control (LDLC) for SRAM cell arrays and an automatic gate leakage suppression driver (AGLSD) for peripheral circuits. We designed and fabricated a 32-kB 1-port SRAM using 90-nm CMOS technology. The six-transistor SRAM cell size is 1.25 /spl mu/m/sup 2/. Evaluation shows that the standby current of 32-kB SRAM is 1.2 /spl mu/A at 1.2 V and room temperature. It is reduced to 7.5% of conventional SRAM.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.