Abstract

A third major, calcium-insoluble component of the sea urchin ( Strongylocentrotus purpuratus) hyaline layer has been purified and physically characterized. In the absence of divalent cations, the native, soluble protein has a sedimentation coefficient of 9.6 S and a molecular weight of 4.5 ± 0.1 × 10 5. These data indicate that this large protein assumes an elongated, nonspherical conformation in solution. Its sedimentation behavior and its mobility on nondenaturing electrophoretic gels distinguish the 9.6 S protein from the 11.6 S and 6.4 S hyalin proteins we have previously characterized. That the 6.4 S, 9.6 S, and 11.6 S proteins are the major calcium-insoluble structural components of the hyaline layer is supported by the fact that we have found them in a variety of hyalin protein fractions prepared by a number of standard approaches. All three proteins are precipitated by calcium ions, thus fitting the operational definition of hyalin. Evidence is presented that the 11.6 S protein may overlie the 9.6 S protein in the hyaline layer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.