Abstract

Spins in molecules are particularly attractive targets for next-generation quantum technologies, enabling chemically programmable qubits and potential for scale-up via self-assembly. Here we report the observation of one of the largest hyperfine interactions for a molecular system, Aiso = 3,467 ± 50 MHz, as well as a very large associated clock transition. This is achieved through chemical control of the degree of s-orbital mixing into the spin-bearing d orbital associated with a series of spin-½ La(II) and Lu(II) complexes. Increased s-orbital character reduces spin-orbit coupling and enhances the electron-nuclear Fermi contact interaction. Both outcomes are advantageous for quantum applications. The former reduces spin-lattice relaxation, and the latter maximizes the hyperfine interaction, which, in turn, generates a 9-GHz clock transition, leading to an increase in phase memory time from 1.0 ± 0.4 to 12 ± 1 μs for one of the Lu(II) complexes. These findings suggest strategies for the development of molecular quantum technologies, akin to trapped ion systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.