Abstract

A 16-element phased-array receiver has been developed for advanced W-band automotive radars. The phased-array receiver is based on a single SiGe chip with RF beamforming capabilities, which is packaged using low-cost bond-wire techniques and attached to a 16-element linear microstrip array. The antenna results in a directivity of 29.3 dB and a gain of 28.0 dB at 77–81 GHz, and can be scanned to <formula formulatype="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex Notation="TeX">$\pm {\hbox{50}}^{\circ}$</tex></formula> in the azimuth plane in <formula formulatype="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex Notation="TeX">$\sim {\hbox {1}}^{\circ}$</tex> </formula> steps. The packaging details are presented together with the steps taken to ensure a wideband impedance match and low coupling between the phased-array channels. Gain measurements done at 79 GHz agree well with simulations. The 16-element phased array receiver was used with a 2-element frequency-modulated continuous-wave transmitter at 76.5–77 GHz and high-resolution millimeter-wave images were obtained. The work shows that complex millimeter-wave phased arrays can be packaged using traditional bond-wire techniques, and can be a powerful solution for advanced automotive radars.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.