Abstract

This paper proposes a 5-b 5-GS/s time-based flash ADC in 65-nm digital CMOS technology, which utilizes both rising and falling edges of the clock for sampling and quantization. A dual-edge-triggered scheme reduces the dynamic power consumption of a voltage-to-time converter and the clock buffers by half. We doubled both the reset and the available regeneration times by interleaving the time comparators. The ADC has a low input capacitance and the calibration circuit is included on-chip for suppressing various mismatches. The prototype running at 5 GS/s consumes 7.8 mW from a 1-V supply and achieves a signal-to-noise and distortion ratio of 26.19 dB at Nyquist. The resulting figure of merit is 94.6 fJ/conversion-step and the core area is only 0.004 mm <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> .

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.