Abstract

We study the feedback vertex set problem in tournaments from the polyhedral point of view, and in particular we show that performing just one round of the Sherali–Adams hierarchy gives a relaxation with integrality gap 7/3. This allows us to derive a 7/3-approximation algorithm for the feedback vertex set problem in tournaments that matches the best deterministic approximation guarantee due to Mnich, Williams, and Végh, and is a simplification and runtime improvement of their approach.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.