Abstract

In recent years, low-power and wearable biomedical testing devices have emerged as a key answer to the challenges associated with epilepsy disorders, which are prone to crises and require prolonged monitoring. The feature vector of the electroencephalographic (EEG) signal was extracted using the lifting wavelet transform algorithm, and the hardware of the lifting wavelet transform module was optimized using the canonic signed digit (CSD) coding method. A low-power EEG feature extraction circuit with a power consumption of 0.42 mW was constructed. This article employs the support vector machine (SVM) technique after feature extraction to categorize and identify epilepsy. A parallel SVM processing unit was constructed to accelerate classification and identification, and then a high-speed, low-power EEG epilepsy detection processor was implemented. The processor design was completed using TSMC 65 nm technology. The chip size is 0.98 mm2, operating voltage is 1 V, operating frequency is 1 MHz, epilepsy detection latency is 0.91 s, power consumption is 0.448 mW, and energy efficiency of a single classification is 2.23 μJ/class. The CHB-MIT database test results show that this processor has a sensitivity of 91.86% and a false detection rate of 0.17/h. Compared to other processors, this processor is more suitable for portable/wearable devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.