Abstract

Aggressive supply voltage scaling to below the device threshold voltage provides significant energy and leakage power reduction in logic and SRAM circuits. Consequently, it is a compelling strategy for energy-constrained systems with relaxed performance requirements. However, effects of process variation become more prominent at low voltages, particularly in deeply scaled technologies. This paper presents a 65 nm system-on-a-chip which demonstrates techniques to mitigate variation, enabling sub-threshold operation down to 300 mV. A 16-bit microcontroller core is designed with a custom sub-threshold cell library and timing methodology to address output voltage failures and propagation delays in logic gates. A 128 kb SRAM employs an 8 T bit-cell to ensure read stability, and peripheral assist circuitry to allow sub-Vt reading and writing. The logic and SRAM function in the range of 300 mV to 600 mV, consume 27.2 pJ/cycle at the optimal V DD of 500 mV, and 1 muW standby power at 300 mV. To supply variable voltages at these low power levels, a switched capacitor DC-DC converter is integrated on-chip and achieves above 75% efficiency while delivering between 10 muW to 250 muW of load power.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call