Abstract
This paper presents a fully integrated dual-antenna phased-array RF front-end receiver architecture for 60-GHz broadband wireless applications. It contains two differential receiver chains, each receiver path consists of an on-chip balun, ag <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">m</sub> -boosted current-reuse low-noise amplifier (LNA), a sub-harmonic dual-gate down-conversion mixer, an IF mixer, and a baseband gain stage. An active all-pass filter is employed to adjust the phase shift of each LO signal. Associated with the proposed dual conversion topology, the phase shift of the LO signal can be scaled to one-third. Differential circuitry is adopted to achieve good common-mode rejection. The g <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">m</sub> -boosted current-reuse differential LNA mitigates the noise, gain, robustness, stability, and integration challenges. The sub-harmonic dual-gate down-conversion mixer prevents the third harmonic issue in LO as well. Realized in a 0.13-mum 1P8M RF CMOS technology, the chip occupies an active area of 1.1 times 1.2 mm <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> . The measured conversion gain and input P1 dB of the single receiver path are 30 dB and -27 dBm , respectively. The measured noise figure at 100 MHz baseband output is around 10 dB. The measured phased array in the receiver achieves a total gain of 34.5 dB and theoretically improves the receiver SNR by 4.5 dB. The proposed 60 GHz receiver dissipates 44 mW from a 1.2 V supply voltage. The whole two-channel receiver, including the vector modulator circuits for built-in testing, consumes 93 mW from a 1.2 V supply voltage.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Circuits and Systems I: Regular Papers
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.