Abstract
As Internet-of-Things (IoT) systems proliferate, there is a greater demand for small and efficient power management units. Fully integrated switched-capacitor (SC) DC-DC converters are promising candidates due to their small form factor and low quiescent power, aided by dynamic activity scaling [1–3]. However, they offer a limited number of conversion ratios, making them challenging to use in actual systems since they often require multiple output voltages (to reduce power consumption) and use various input power sources (to maximize flexibility). In addition, maintaining both high efficiency and fast load response is difficult at low output current levels, which is critical for IoT devices as they often target low standby power to preserve battery charge. This paper presents a fully integrated power management system that converts an input voltage within a 0.9-to-4V range to 3 fixed output voltages: 0.6V, 1.2V, and 3.3V. A 7-stage binary-reconfigurable DC-DC converter [1–2] enables the wide input voltage range. Three-way dynamic frequency control maintains converter operation at near-optimum conversion efficiency under widely varying load conditions from 5nW to 500µW. A proposed load-proportional bias scheme helps maintain high efficiency at low output power, fast response time at high output power and retains stability across the entire operating range. Analog drop detectors improve load response time even at low output power, allowing the converter to avoid the need for external sleep/wakeup control signals. Within a range of 1-to-4V input voltage and 20nW–500µW output power, the converter shows >60% conversion efficiency, while maintaining responsiveness to a 100× sudden current increase.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Digest of technical papers. IEEE International Solid-State Circuits Conference
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.