Abstract

This paper describes a 6.6-kV adjustable-speed motor drive for pumps and blowers without transformer. The power conversion system consists of a front-end diode rectifier, a five-level diode-clamped pulsewidth modulation (PWM) inverter with a voltage balancing circuit, and a hybrid active filter for harmonic-current mitigation of the diode rectifier. The control of the inverter is characterized by superimposing a third-harmonic zero-sequence voltage on each of the three-phase reference voltages to achieve the so-called overmodulation and reduce the switching stress of insulated gate bipolar transistors (IGBTs). A 200-V 5.5-kW downscale model is designed, constructed, and tested with focus on the five-level PWM inverter and the voltage balancing circuit. Experimental results obtained from the 200-V downscale model verify the viability and effectiveness of the 6.6-kV adjustable-speed motor drive, showing that the four split dc capacitor voltages are well balanced in all the operating conditions and that the switching stress of the IGBTs is reduced at low modulation indexes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call