Abstract
When two linear DNA molecules with overlapping, homologous ends were incubated with a yeast nuclear extract, they recombined at the region of homology to produce a joint molecule. We have identified a 5'-3' exonuclease in the extract that is likely to be responsible for the formation of the observed product. We propose that the exonuclease degrades each substrate to reveal regions of complementary sequence which anneal to form a recombinant product. Consistent with this model, we have partially purified the activity that promotes joint molecule formation and found it to cofractionate with a 5'-3' exonuclease activity through three consecutive chromatography steps. We have further characterized the reaction to determine the optimal length of homology. Substrates with homologous terminal overlaps of 29 to 958 bp were capable of product formation, whereas substrates with longer overlaps were not. Extracts prepared from a number of recombination-defective or nuclease-deficient strains revealed no defect in exonuclease activity, indicating that the reaction is likely to be dependent upon the product of an as yet unidentified gene.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.