Abstract

The advanced driver assistance system (ADAS) for adaptive cruise control and collision avoidance is strongly dependent upon the robust image recognition technology such as lane detection, vehicle/pedestrian detection, and traffic sign recognition. However, the conventional ADAS cannot realize more advanced collision evasion in real environments due to the absence of intelligent vehicle/pedestrian behavior analysis. Moreover, accurate distance estimation is essential in ADAS applications and semiglobal matching (SGM) is most widely adopted for high accuracy, but its system-on-chip (SoC) implementation is difficult due to the massive external memory bandwidth. In this paper, an ADAS SoC with behavior analysis with Artificial Intelligence functions and hardware implementation of SGM is proposed. The proposed SoC has dual-mode operations of high-performance operation for intelligent ADAS with real-time SGM in D-Mode (d-mode) and ultralow-power operation for black box system in parking-mode. It features: 1) task-level pipelined SGM processor to reduce external memory bandwidth by 85.8%; 2) region-of-interest generation processor to reduce 86.2% of computation; 3) mixed-mode intention prediction engine for dual-mode intelligence; and 4) dynamic voltage and frequency scaling control to save 36.2% of power in d-mode. The proposed ADAS processor achieves 862 GOPS/W energy efficiency and 31.4-GOPS/mm2 area efficiency, which are 1.53 $\times $ and 1.75 $\times $ improvements than the state of the art, with 30 frames/s throughput under 720p stereo inputs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call