Abstract

A fully integrated digital low-dropout regulator (DLDO) with a fast transient response, providing a regulated supply for system-on-chip (SoC) power management applications is proposed. Wideband operation and fast transient response are achieved through a transient enhanced proportional-integral controller, without compromising the stability of the DLDO at steady-state operation. The transient enhancement stage boosts loop-gain dynamically during load transients. In the gain boosting mode, the DLDO closed-loop bandwidth is increased, resulting in reduced undershoot/overshoot and fast settling. When the output voltage recovers to the desired level, the boost mode operation is disabled. For a load change with a 4-mA/ns slew rate between 10 and 50 mA, utilizing transient enhancement mode reduced the measured undershoot and overshoot by 35% and 17%, respectively. The characterization results show that the transient enhancement mode can reduce the settling time from 500 to 250 ns for a 10–50-mA load current change. The proposed DLDO operates with an input voltage ranging from 0.84 to 1.24 V, and output voltage ranging from 0.6 to 1 V. The maximum output current of the DLDO is 50 mA and the DLDO achieves a peak current efficiency of 99.2%, with DLDO figure of merit (FOM2) of 63.25 ps. The DLDO prototype chip is fabricated on a 0.13- $\mu \text{m}$ CMOS technology and occupies a 0.0631-mm2 die area.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.