Abstract

We have designed, manufactured, and characterized an 8-bit 5 Giga samples per second (Gsps) ADC printed circuit board assembly (PCBA). An e2v EV8AQ160 ADC chip was used in the design and the board is plug compatible with the field programmable gate array (FPGA) board developed by the Collaboration for Astronomy Signal Processing and Electronics Research (CASPER) community. Astronomical interference fringes were demonstrated across a single baseline pair of antennas using two ADC boards on the Yuan Tseh Lee Array for Microwave Background Anisotropy (AMiBA) telescope. Several radio interferometers are using this board for bandwidth expansion, such as Submillimeter Array; also, several experimental telescopes are building new spectrometers using the same board. The ADC boards were attached directly to the Reconfigurable Open Architecture Computing Hardware (ROACH-2) FPGA board for processing of the digital output signals. This ADC board provides the capability of digitizing radio frequency signals from DC to 2 GHz (3 dB bandwidth), and to an extended bandwidth of 2.5 GHz (5 dB) with derated performance. The following worst-case performance parameters were obtained over 2 GHz: spur free dynamic range (SFDR) of 44 dB, signal-to-noise and distortion (SINAD) of 35 dB, and effective number of bits (ENOB) of 5.5.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call