Abstract

This paper presents a 5-bit 1.25-GS/s folding flash ADC. The prototype achieves a folding factor of four with a capacitive folding technique that only consumes dynamic power. Incorporated with various calibration schemes, folding errors and the comparator's threshold inaccuracies are corrected, thus allowing a low input capacitance of 80 fF. The design is fabricated using 65-nm digital CMOS technology and occupies 0.007 mm <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> . The maximum DNL and INL post calibration are 0.67 and 0.47 LSB, respectively. Measurement results show that the ADC can achieve 1.25 GS/s at 1-V supply with a total power consumption of 595 μW. In addition, it exhibits a mean ENOB of 4.8b at dc among ten chips, which yields an FoM of 17 fJ/conversion-step.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.