Abstract

Honey is used as a therapy to aid wound healing. Previous data indicate that honey can stimulate cytokine production from human monocytes. The present study further examines this phenomenon in manuka honey. As inflammatory cytokine production in innate immune cells is classically mediated by pattern recognition receptors in response to microorganisms, bacterial contamination of honey and the effect of blocking TLR2 and -4 on stimulatory activity were assessed. No vegetative bacteria were isolated from honey; however, bacterial spores were cultured from one-third of samples, and low levels of LPS were detected. Blocking TLR4 but not TLR2 inhibited honey-stimulated cytokine production significantly. Cytokine production did not correlate with LPS levels in honey and was not inhibited by polymyxin B. Further, the activity was reduced significantly following heat treatment, indicating that component(s) other than LPS are responsible for the stimulatory activity of manuka honey. To identify the component responsible for inducing cytokine production, honey was separated by molecular weight using microcon centrifugal filtration and fractions assessed for stimulatory activity. The active fraction was analyzed by MALDI-TOF mass spectroscopy, which demonstrated the presence of a number of components of varying molecular weights. Additional fractionation using miniaturized, reverse-phase solid-phase extraction resulted in the isolation of a 5.8-kDa component, which stimulated production of TNF-alpha via TLR4. These findings reveal mechanisms and components involved in honey stimulation of cytokine induction and could potentially lead to the development of novel therapeutics to improve wound healing for patients with acute and chronic wounds.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.