Abstract

The cyclotron resonance heating rate in a plasma has been evaluated so far from a five-dimensional (5D) quasilinear model because the 6D evaluation is prohibitively expensive. However, the quasilinear approach as applied to the cyclotron resonance heating has fundamental difficulties in evaluating the net effect from a large number of coupled wave modes (leading to strong spatial wave inhomogeneity) since the theory is built on the Fourier space wave representation, and does not include the regular nonlinear particle dynamics within a resonance passing event since the theory is based on the unperturbed orbit theory. A new 5-1/2D theory is formulated for evaluation of a more accurate resonant particle dynamics using the real-space wave representation, which overcomes the shortcomings of the quasilinear cyclotron resonance heating theories by reproducing the 6D physics at the 5D computing speed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.