Abstract

Developing alternative exercise programmes that can alleviate certain barriers to exercise such as psychological, environmental or socio-economical barriers, but provide similar physiological benefits e.g. increases in muscle mass and strength, is of grave importance. This pilot study aimed to assess the efficacy of an unsupervised, 4-week, whole-body home-based exercise training (HBET) programme, incorporated into daily living activities, on skeletal muscle mass, power and strength. Twelve healthy older volunteers (63±3 years, 7 men: 5 women, BMI: 29±1 kg/m²) carried out the 4-week "lifestyle-integrated" HBET of 8 exercises, 3x12 repetitions each, every day. Before and after HBET, a number of physical function tests were carried out: unilateral leg extension 1-RM (one- repetition maximum), MVC (maximal voluntary contraction) leg extension, lower leg muscle power (via Nottingham Power Rig), handgrip strength and SPPBT (short physical performance battery test). A D 3-Creatine method was used for assessment of whole-body skeletal muscle mass, and ultrasound was used to measure the quadriceps cross-sectional area (CSA) and vastus lateralis muscle thickness. Four weeks HBET elicited significant (p<0.05) improvements in leg muscle power (276.7±38.5 vs. 323.4±43.4 W), maximal voluntary contraction (60°: 154.2±18.4 vs. 168.8±15.2 Nm, 90°: 152.1±10.5 vs. 159.1±11.4 Nm) and quadriceps CSA (57.5±5.4 vs. 59.0±5.3 cm 2), with a trend for an increase in leg strength (1-RM: 45.7±5.9 vs. 49.6±6.0 kg, P=0.08). This was despite there being no significant differences in whole-body skeletal muscle mass, as assessed via D 3-Creatine. This study demonstrates that increases in multiple aspects of muscle function can be achieved in older adults with just 4-weeks of "lifestyle-integrated" HBET, with a cost-effective means. This training mode may prove to be a beneficial alternative for maintaining and/or improving muscle mass and function in older adults.

Highlights

  • Older age is associated with the loss of skeletal muscle mass

  • As a result, homebased exercise training (HBET) programmes have been suggested as an alternative to overcome some of the barriers associated with poor compliance to exercise (Hong et al, 2017; Silveira et al, 2013), whilst providing a platform to develop the benefits of resistance exercise training (RET) for sarcopenic individuals (Maruya et al, 2016)

  • Each volunteer had the thickness, fascicle length (Lf) and pennation angle of their vastus lateralis muscle, and the cross-sectional area (CSA) of their quadriceps measured by ultrasound (Mylab 70, Esaote Biomedica, Genova, Italy), using the protocol described by Franchi et al (2014)

Read more

Summary

Introduction

Older age is associated with the loss of skeletal muscle mass. Termed sarcopenia, age-related muscle wasting is associated with loss of muscle strength (dynapenia), increased morbidity, loss of independence and premature mortality (Rudrappa et al, 2016). Developing alternative exercise programmes that can alleviate certain barriers to exercise such as psychological, environmental or socio-economical barriers, but provide similar physiological benefits e.g. increases in muscle mass and strength, is of grave importance This pilot study aimed to assess the efficacy of an unsupervised, 4-week, whole-body home-based exercise training (HBET) programme, incorporated into daily living activities, on skeletal muscle mass, power and strength. Results: Four weeks HBET elicited significant (p

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call