Abstract
A 4th-order band-pass filter (BPF) based on the subtraction of two 2nd-order contour-mode Lamb-wave resonators is presented. The resonators have slightly different resonance frequencies around 380 MHz. Each resonator consists of a 500 nm pulsed-laser deposited lead zirconate titanate (PZT) thin-film on top of a 3 μm silicon (PZT-on-Si). The resonators are actuated in-phase, and their outputs are subtracted. Utilizing this technique, the feed-through signals are eliminated while the outputs of the resonators are added up constructively, due to the phase difference between the two output signals. The BPF is presented using 50 Ω termination with a bandwidth of approximately 3.9 MHz and 43 dB stopband rejection. This technique provides further opportunities for MEMS filter design in addition to existing methods, i.e., mechanical and/or electrical coupling. It also resolves the design issue associated with high feed-through when exploiting piezoelectric materials with high-dielectric constant like PZT.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.